MATH 225 Review

Kyle Daling

June 5, 2016

Spherical Coordinates

 $\begin{aligned} x &= \rho \sin \phi \cos \theta \\ \rho^2 &= x^2 + y^2 + z^2 \\ \theta \text{ is angle in } xy\text{-plane} \end{aligned}$

$y = \rho \sin \phi \sin \theta$

 $\begin{aligned} z &= \rho \cos \theta \\ dv &= \rho^2 \sin \phi \ dp \ d\phi \ d\theta \\ \phi \ \text{is angle from the } z\text{-axis} \end{aligned}$

Change of variables

- 1. Substitute x and y in terms of s and t
- 2. Change xy region into st region
- 3. Use Jacobian in $\frac{\partial(x,y)}{\partial(s,t)} ds dt$

 $\text{Jacobian} = \begin{bmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{bmatrix}$

Parameterized Curves

Trace out line on curve as t changes Collision: Check if equations are equal Cross: Change one's variables, check if collide $\vec{v}(t) = \vec{r}'(t) = \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle$ Tangent line to $\vec{r}(t)$ $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \left\langle \frac{\partial^2 x}{\partial t^2}, \frac{\partial^2 y}{\partial t^2}, \frac{\partial^2 z}{\partial t^2} \right\rangle$ Length of C: $\int_a^b ||\vec{v}|| dt$ where \vec{v} is the velocity Vector fields: $\vec{F}(x, y) = \langle , \rangle$ Flow line is a path along a vector field $\vec{r}'(t) = \vec{v} = \vec{F}(\vec{r}(t))$ Flow is the family of all flow lines Parameterized surfaces: $\vec{r} = \langle s, t, f(s, t) \rangle$ Plane: $\vec{r}(s, t) = \vec{r_0} + s\vec{v_1} + t\vec{v_2}$

Line integrals

Circulation: If C is an oriented closed curve, the line integral of a vector field \vec{F} around curve C is called the circulation of \vec{F} around C

 $\begin{array}{ll} \text{Properties:} \\ \int_{c}(\vec{F}\cdot\vec{G})\cdot dr &= \int_{c}\vec{F}\cdot dr + \int_{c}\vec{G}\cdot dr \\ \vec{F}(x,y) &= \langle x+y,y \rangle \end{array} \begin{array}{ll} \int_{c_{1}+c_{2}}\vec{F}\cdot dr &= \int_{c_{1}}\vec{F}\cdot dr + \int_{c_{2}}\vec{F}\cdot dr \\ \int_{a}^{b}\vec{F}(\vec{r})\cdot\vec{r\prime}(t)dt &= \int_{a}^{b}\left|\left|\vec{F}\right|\right| ||dt||\cos\theta \end{array}$

 $l(t) = \vec{r}(t_0) + t\vec{r'}(t_0)$

 \vec{v} is tangent to $\vec{r}(t)$'s motion

$$\int_{C} \vec{F} \cdot dr = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt$$
$$\int_{C} \nabla f \cdot dr = f(Q) - f(P)$$

where your line goes from P to QPath independence \Rightarrow Gradient of function and Gradient of function \Rightarrow Path independence Path independent vector fields are gradient fields f is a potential function of \vec{F} Path independent iff $\int_c \vec{F} \cdot dr = 0$ for all closed curves $\operatorname{curl} = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}$ Green's theorem: For a vector field \vec{F} that has no holes on R

$$\int_{c} \vec{F} \cdot dr = \int_{R} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} dA$$

Curl test: \vec{F} is path independent if:

- Domain of \vec{F} has no holes over region R
- If curl is zero, \vec{F} is path independent
- If curl is not zero, \vec{F} is not path independent

Flux integrals

$$\begin{split} \int_{s} \vec{F} \cdot \vec{dA} \\ \text{For functions: } & \int_{R} \vec{F}(x, y, f(x, y)) \cdot \langle -f_{x}(x, y), -f_{y}(x, y), 1 \rangle \, dx \, dy \\ \text{Parameterized surface:} \\ & \int \vec{F} \cdot \vec{dA} = \int_{R} \vec{F} \left(\vec{r}(s, t) \right) \cdot \left(\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} \right) \, ds \, dt \end{split}$$

 $\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$ can never be zero and has to be parallel to \vec{n} everywhere. Be sure to check that $\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$ is parallel to \vec{n} Total surface area of surface:

$$\int_{S} dA = \int_{R} \left| \left| \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} \right| \right| ds \ dt$$

Divergence

If $\vec{F} = \langle F_1, F_2, F_3 \rangle$

$$\operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Divergence free or solenoidal if div $\vec{F} = 0$ everywhere Harmonic if $\frac{\partial^2 F_1}{\partial x^2} + \frac{\partial^2 F_2}{\partial y^2} + \frac{\partial^2 F_3}{\partial z^2} = 0$ **Divergence theorem:** Where s is the given outward orientation

$$\int_{s} \vec{F} \cdot d\vec{A} = \int_{w} \operatorname{div} \vec{F} \, dv$$

Curl of vector field in 3-space

Curl measures circulation of a vector field If $\vec{F} = \langle F_1, F_2, F_3 \rangle$

$$\operatorname{curl} \vec{F} = \left\langle \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right\rangle$$

If $\nabla = \langle F_1, F_2, F_3 \rangle$, $\nabla \times \vec{F} = \operatorname{curl} \vec{F}$ Circulation of \vec{F} around \vec{n} : $\operatorname{circ}_{\vec{n}} \vec{F} = \left(\operatorname{curl} \vec{F}\right) \cdot \vec{n}$

Curl free if $\operatorname{curl} \vec{F} = \vec{0}$ everywhere \vec{F} is defined **Stokes theorem:** If S is a smooth oriented surface with piecewise smooth, oriented boundary C, and if \vec{F} is a smooth vector field on an open region containing S and C, then:

$$\int_C \vec{F} \cdot dr = \int_S \operatorname{curl} \vec{F} \cdot d\vec{A}$$

Orientation of C is determined from the orientation of S by using the right hand rule. curl field if $\vec{F} = \text{curl } \vec{G}$ is a vector potential of \vec{F}