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Section 1.8

17. T (3~u) = 3T (~u) = 3

[
2
1

]
=

[
6
3

]
, T (2~v) = 2T (~v) = 2

[
−1
3

]
=

[
−2
6

]
, and T (3~u + 2~v) =

3T (~u) + 2T (~v) =

[
6
3

]
+

[
−2
6

]
=

[
4
9

]
19. Let A19 be a 2× 2 matrix.

A19

[
1
0

]
=

[
2
5

]
and A19

[
0
1

]
=

[
−1
6

]
, ∴ A19 =

[
2 −1
5 6

]
A19

[
5
−3

]
= 5

[
2
5

]
− 3

[
−1
6

]
=

[
13
7

]
A19

[
x1

x2

]
= x1

[
2
5

]
+ x2

[
−1
6

]
=

[
2x1 − x2

5x1 + 6x2

]
32. Let A32 =

[
4 −2
0 |x2|

]
The absolute value of x2 is not a linear function. Therefore the trans-

formation cannot be a linear transformation.

33. T (x1, x2) =

2x1 − 3x2

x1 + 4
5x2

 , T (0, 0) =

0− 0
0 + 4

0

 Transforming the origin does not give the

origin. Therefore this transformation cannot be a linear transformation.

Section 1.9

3. Let A3 =

[
0 1
−1 0

]
,

[
0 1
−1 0

] [
1
0

]
=

[
0
−1

]
,

[
0 1
−1 0

] [
0
1

]
=

[
1
0

]
5. Let A5 =

[
1 0
−2 1

]
,

[
1 0
−2 1

] [
1
0

]
=

[
1
−2

]
,

[
1 0
−2 1

] [
0
1

]
=

[
0
1

]
8. Let A8 =

[
0 −1
1 1

]
, proof

[
0 −1
1 1

] [
1
0

]
=

[
0
1

]
and

[
0 1
1 −1

] [
0
1

]
=

[
−1
1

]

13.
x1

x2

T (~e1) T (~e2)

T (2, 1)
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14.

x1

x2

~a1

~a2

20. T (x1, x2, x3, x4) =
[
2 0 3 −4

]
22. T (x1, x2)⇒

 1 −2
−1 3
3 −2

 ~x =

−1
4
9

⇒
 1 −2 −1
−1 3 4
3 −2 9

 rref−−→

1 0 5
0 1 3
0 0 0

⇒ x1 = 5 and x2 = 3

28. (a) The transformation in Exercise 14 is one-to-one because the two vectors are linearly
independent.

(b) The transformation in Exercise 14 is onto because the two vectors span all of R2 because
they are linearly independent.
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9. Let M =

[
.95 .04
.05 .96

]
and x0 =

[
600000
400000

]
⇒ x1 =

[
586000
414000

]
⇒ x2 =

[
573260
426740

]

12. M =

.97 .05 .10
0 .9 .05
.03 .05 .85

 and xMonday =

304
48
98

 ⇒ xTuesday =

.97 .05 .10
0 .9 .05
.03 .05 .85

 ×
304

48
98

 =307.08
48.1
94.82

⇒ xWednesday = M × xTuesday =

309.555
47.931
90.5144


Supplementary Exercises

1. e. False, the solution sets can row equivalent, but not necessarily exactly the same.

f. True, if a non-homogeneous system is consistent and has infinite solution it must have
a pivotless column. If put into a homogeneous system, the homogeneous system must
also have a pivotless column forcing the system have infinite solutions.

g. False, the matrix A must be consistent for all ~b in Rm.
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h. False, what are the pivots. There could be a pivot in the augmented column which
would make the system inconsistent.

j. True, there must be a pivot in every column for a homogeneous system to have only
the trivial solution.

k. True, this is equivalent to saying that A spans all of Rm which requires a pivot in every
row.

Handout

3. (a) False, if the vectors given by the columns of A are linearly independent, they can span
all of R2. It is possible for A to have a pivot in every column.

(b) False, homogeneous systems are guaranteed to always be consistent because it is im-
possible for them to have a pivot in the augmented column. It is possible for a pivot
to be in the augmented column in the system A~x = ~b which would make the system
inconsistent.
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