Kyle Daling
CSCI 305
Assignment 3

May 17, 2017

Question 1

Line Cost Times
build_max_heap() On) 1
for i = n downto 2 (& n
exchange A[1] and A[i] Cy n—1
heapsize -= 1 Cs n—1
max_heapify(A,1) 77 n—1

The runtime of the algorithm is dependent on the runtime of max_heapfiy(A,1) within the for loop.
When called at the root of the heap, max_heapify’s runtime is bounded by O(h) where h is the
height of the heap. In the for loop, exchange will always move a leaf to the top of the heap. The
exchanged leaf will always make its way down the heap to a leaf node since it is smaller than all of
the non-leaf nodes. Therefore the best case runtime of max_heapify will is bounded by Q(h). The
height of the heap is given by lg(n) where n is the number of nodes in the heap. Every iteration
of the for loop the heap decreases in size by 1. Therefore we can calculate the runtime of all calls
to max_heapify with the following summation.

Zlgz’zlgl—i—Zlgz’:Zlgi:lg1+1g2+...+lgn:lg(1 X2xX...xn)=0(nlgn)
=2 =2 i=1

Therefore the runtime of heapsort will be dominated by the runtime of max_heapify which is
©(nlgn). Therefore heapsort is both O(nlgn) and Q(nlgn).

Question 2
The algorithm I developed to compute the k-th smallest integers is below.

build_min_heap()

for i =1 tok
min.push(heap_extract_min())

return min

To prove this algorithm is O(n + klgn) I will find the components of the runtime.

1

Line Cost Times

build_min_heap() O(n) 1
fori=1tok C, k+1
min.push(heap_extract_min()) 77 k
return min Cs 1

The heap_extract_min adds a constant amount of work to the runtime of min_heapify which is
©(h) where h is the height of the tree given by lgn. Every time an element is removed from the
heap the size decreases by one. Therefore the total runtime for the inner line of the for loop is
given by the sum:

k k

Zlg(n—i) < Zlgn

i=1 i=1
=lgn+lgn+...+1gn
=klgn

Therefore line 3 will be bounded by O(klgn).

Therefore the total runtime for the algorithm will be:

O(n)+Ci(k+1)+ O(klgn) + Cy = O(n) + kC, + C1 + O(klgn) + Cy
=O0(n+klgn)

Question 3
The algorithm I developed to report the keys smaller than key is below.

smaller_than(A, key, i=1)
left = left(i)
right = right(i)
rtrn = []
if A[i] <= key:
rtrn += [A[i]]
if left <= n and A[left] <= key:
rtrn += self.smaller_than(A, key, left)
if right <= n and A[right] <= key:
rtrn += self.smaller_than(A, key, right)
return rtrn

Assume that the += operator adds the two lists together in constant time.

This algorithm is somewhat similar to max_heapify. This algorithm takes a minimum heap and
the termination key as input. The algorithm starts on the root node of the min-heap. If the
current node is less than or equal to key, it is added to the list. If the left child is less than key,
the algorithm recurses on the left child. If the right child is less than key, the algorithm recurses
on the right child. We know from the properties of min-heaps that if a root element of the heap
is larger than key, then all sub-nodes in the heap must also be larger than the root, which forces
the remaining elements in the heap to be larger than key. Therefore the algorithm will only visit
the nodes in the heap that are less than key giving a runtime of ©(k) where k is the number of
elements returned by the algorithm.

Question 4

a. ‘ Max Stack Depth ‘ Running time
A is sorted O(n) O(n?)
A with all elements equal | ©(n) O(n?)
A is reversely sorted O(n) O(n?)

When A is sorted the pivot will always be the maximum element in the partition. The
algorithm will first push the right partition with length 0, then push the left partition with
a length one less than the current length. The while loop will then continue with the left
partition. Therefore each iteration of the while loop where p < ¢ will add a new tuple to
the stack, ultimately giving n tuples on the stack. Every call to partition will swap every
element in the partition with itself, then swap the pivot with itself. This gives partition a
runtime of ©(n) and partition will be called n times, giving total runtime ©(n?).

When A has all elements equal, the elements are all in sorted order. The algorithm behaves
the same as when all elements were sorted.

When A has element in reverse sorted order the pivot will alternate between being the
smallest and largest value in the partition. Starting the first iteration of the while loop
where p = 1 and r = n partition will swap the last element in the partition to the first
position in the partition. The algorithm will then push the valid right partition onto the
stack, then will push the invalid left partition onto the stack. The algorithm pops the invalid
partition off the stack and discards it. The algorithm then pops off the next valid partition
swaps the pivot with itself (because the pivot is the largest element in the partition) and
continues the sequence. This case will have slightly more than half the number of tuples
on the stack, upper bounded by (”THW The runtime will remain identical to both previous
cases, partition will remain with runtime ©(n) and will have to be run n times, yielding a
runtime of ©(n?).

b. ‘ Max Stack Depth ‘ Running time
A is sorted O(1) O(n?)
A with all elements equal | O(1) O(n?)
A is reversely sorted O(n) O(n?)

Changing the order of pushes does not change the runtime of the algorithm.

When A is sorted, the valid left partition will be pushed first, then the invalid right partition
will be pushed. The next iteration of the while loop discards the invalid right partition. The
next iteration starts the process over again. There will only be the a maximum of 2 tuples
on the stack, one each from the last right and left partition.

When A is reversely sorted the maximum stack depth will be [2£2] = O(n).

