CSCI 301 Formal languages and Functional Programming Assignment 5 Winter, 2016 Kyle Daling

Section 3.1

- 8. (a) Lists of length 5 with at least one letter repeated
 All possible lists of length 5 = 5⁵
 Lists of length 5 with no letters repeated = 5! = 5 × 4 × 3 × 2 × 1
 Lists of length 5 with at least one letter repeated = 5⁵ 5!
 - (b) Lists of length 6 with at least one letter repeated All possible lists of length $6 = 5^6$ But because there are only 5 elements to choose from, one letter will always be repeated. So, lists of length 6 with at least one letter repeated = 5^6

Section 3.3

12. Repeats: **no**, Ordered: **no** \Rightarrow subsets Number of ways to choose Blue Team = $\binom{21}{11}$ Number of ways to choose Red Team = $\binom{21}{10}$ $\binom{21}{10} + \binom{21}{11}$

Section 3.5

- 4. Lists \Rightarrow Ordered: **yes**, Repetition: **yes**
 - (a) $5 \times 6 \times 6 \times 5 = 5^2 * 6^2$ (b) 2 * 6(c) $3 * 6^2$

Chapter 6

8. Assume by contradiction that $(a^2 + b^2 = c^2) \wedge (a \text{ and } b \text{ are odd})$

 $a = 2x + 1 \text{ for } x \in \mathbb{Z}$ $b = 2y + 1 \text{ for } y \in \mathbb{Z}$ $c^{2} = a^{2} + b^{2}$ $= (2x + 1)^{2} + (2y + 1)^{2}$ $= 4x^{2} + 4x + 1 + 4y^{2} + 4y + 1$ $= 4x^{2} + 4y^{2} + 4x + 4y + 2$ $= 2(2x^{2} + 2y^{2} + 2x + 2y + 1)$ $= 2z \text{ for } z \in \mathbb{Z} \land z = 2x^{2} + 2y^{2} + 2x + 2y + 1$

However, it is possible for c^2 to be odd, therefore c^2 is both odd and even. Therefore we have proved the original statement via contradiction.

10. Assume by contradiction that integers a, b exist for which 21a + 30b = 1Divide both sides of the equation by 3 $7a + 10b = \frac{1}{3}$

a and b are integers, so their sum will also be an integer

 $\therefore \frac{1}{3}$ is an integer

Since $\frac{1}{3}$ is not an integer, we have proved the original statement via contradiction.